Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 40(3)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36881879

RESUMO

Increasing numbers of horizontal transfer (HT) of genes and transposable elements are reported in insects. Yet the mechanisms underlying these transfers remain unknown. Here we first quantify and characterize the patterns of chromosomal integration of the polydnavirus (PDV) encoded by the Campopleginae Hyposoter didymator parasitoid wasp (HdIV) in somatic cells of parasitized fall armyworm (Spodoptera frugiperda). PDVs are domesticated viruses injected by wasps together with their eggs into their hosts in order to facilitate the development of wasp larvae. We found that six HdIV DNA circles integrate into the genome of host somatic cells. Each host haploid genome suffers between 23 and 40 integration events (IEs) on average 72 h post-parasitism. Almost all IEs are mediated by DNA double-strand breaks occurring in the host integration motif (HIM) of HdIV circles. We show that despite their independent evolutionary origins, PDV from both Campopleginae and Braconidae wasps use remarkably similar mechanisms for chromosomal integration. Next, our similarity search performed on 775 genomes reveals that PDVs of both Campopleginae and Braconidae wasps have recurrently colonized the germline of dozens of lepidopteran species through the same mechanisms they use to integrate into somatic host chromosomes during parasitism. We found evidence of HIM-mediated HT of PDV DNA circles in no less than 124 species belonging to 15 lepidopteran families. Thus, this mechanism underlies a major route of HT of genetic material from wasps to lepidopterans with likely important consequences on lepidopterans.


Assuntos
Polydnaviridae , Vespas , Animais , Polydnaviridae/genética , Vespas/genética , Larva/genética , Cromossomos
2.
Mol Ecol ; 31(21): 5538-5551, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36070218

RESUMO

Bracoviruses (BVs) are domesticated viruses found in braconid parasitoid wasp genomes. They are composed of domesticated genes from a nudivrius, coding viral particles in which wasp DNA circles are packaged. BVs are viewed as possible vectors of horizontal transfer of genetic material (HT) from wasp to their hosts because they are injected, together with wasp eggs, by female wasps into their host larvae, and because they undergo massive chromosomal integration in multiple host tissues. Here, we show that chromosomal integrations of the Cotesia typhae BV (CtBV) persist up to the adult stage in individuals of its natural host, Sesamia nonagrioides, that survived parasitism. However, while reproducing host adults can bear an average of nearly two CtBV integrations per haploid genome, we were unable to retrieve any of these integrations in 500 of their offspring using Illumina sequencing. This suggests either that host gametes are less targeted by CtBVs than somatic cells or that gametes bearing BV integrations are nonfunctional. We further show that CtBV can massively integrate into the chromosomes of other lepidopteran species that are not normally targeted by the wasp in the wild, including one which is divergent by at least 100 million years from the natural host. Cell entry and chromosomal integration of BVs are thus unlikely to be major factors shaping wasp host range. Together, our results shed new light on the conditions under which BV-mediated wasp-to-host HT may occur and provide information that may be helpful to evaluate the potential risks of uncontrolled HT associated with the use of parasitoid wasps as biocontrol agents.


Assuntos
Polydnaviridae , Vespas , Humanos , Animais , Feminino , Polydnaviridae/genética , Vespas/genética , Genoma , Simbiose , Cromossomos
3.
Med Sci (Paris) ; 38(12): 1016-1027, 2022 Dec.
Artigo em Francês | MEDLINE | ID: mdl-36692281

RESUMO

Viruses can provide new biological functions to plants and animals. Some viruses persisting at low levels in plants might confer resistance to stress and parasites. In animals, more numerous examples of genes originating from viruses and used by different organisms have been described. For examples these genes might contribute to protect from new infections, or to ensure communication between neurons or to enable placenta development. In parasitic wasps, a complex viral machinery has been conserved as an endogenous virus dispersed in the wasp genome, which produces virions. These virions infect the parasitized host resulting in the production of virulence factors that inhibit defense mechanisms against the parasite. Different organisms have used the same viral functions repeatedly during animal evolution.


Title: Des virus bénéfiques pour les plantes et les animaux. Abstract: Les virus peuvent apporter de nouvelles fonctions aux organismes qui les portent. Chez les plantes, des virus, présents à des niveaux d'infection faibles, confèrent des propriétés de résistance aux stress et aux parasites. Chez les animaux, de plus nombreux exemples d'appropriation de gènes viraux, qui participent en particulier à la protection contre de nouvelles infections, à la communication entre les neurones, ou à la morphogenèse du placenta, ont été décrits. Chez les guêpes parasites, une machinerie virale complexe est conservée sous la forme d'un virus endogène dispersé dans le génome, leur permettant d'infecter l'hôte parasité et de lui faire exprimer des protéines inhibant ses propres mécanismes de défense. Les processus d'appropriation des mêmes fonctions virales se sont souvent répétés au cours de l'évolution. Cette revue aborde des exemples de symbioses virales (c'est-à-dire, des cas où le virus exploite un organisme-hôte en lui étant par ailleurs bénéfique), où l'apport positif des virus est bien documenté.


Assuntos
Polydnaviridae , Vírus , Vespas , Animais , Polydnaviridae/fisiologia , Vírus/genética , Vírion/fisiologia , Fenômenos Fisiológicos Virais , Fatores de Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...